Evidence for Resonance-Assisted Hydrogen Bonding from Crystal-Structure Correlations on the Enol Form of the β-Diketone Fragment

Gastone Gilli,* Fabrizio Bellucci, Valeria Ferretti, and Valerio Bertolasi
Contribution from the Centro di Strutturistica Diffrattometrica and Dipartimento di Chimica, Università di Ferrara, 44100 Ferrara, Italy. Received May 4, 1987.
Revised Manuscript Received September 14, 1988

Abstract

The geometry variations caused by inter- and intramolecular hydrogen bond (HB) formation on the molecular fragment $\mathrm{acacH}(\mathrm{HOCR}=\mathrm{CR}-\mathrm{CR}=\mathrm{O})$ contained in the enol form of acetylacetone and other related β-diketones and β-keto esters have been studied by crystal structure correlation methods on 25 X -ray or neutron crystallographically determined molecules containing such a fragment. acacH can form either a single intramolecular HB closing a 6 -membered ring or intermolecular HBs connecting the groups head-to-tail in infinite linear arrays. Experimental data show that there is a strong correlation between the strength of the HB formed (measured by both the $d_{0 \ldots \mathrm{O}}$ and $d_{\mathrm{O}-\mathrm{H}}$ values) and the delocalization of the system of conjugated double bonds. The effect is qualitatively interpreted in terms of a mechanism of synergistic interplay of resonance and HB formation which is called resonance-assisted hydrogen bonding (RAHB), and it is shown that the proposed model is in agreement with all present NMR and IR data and with the most recent ab initio quantum mechanical calculations reported for malonaldehyde. For more complex molecules a semiempirical model has been developed to evaluate both the energy of the HB formed $\left(E_{1}\right)$ and the height of the barrier for proton $\operatorname{transfer}\left(E_{2}\right)$; with reference to water, where $E_{1}=20$ and E_{2} $=40 \mathrm{~kJ} \mathrm{~mol}^{-1}, E_{1}$ and E_{2} are calculated to be 53.4 and $35 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in acetylacetone and 82.5 and $27.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ in hexamethylacetylacetone, showing that very strong HB's with central hydrogen position are favored by substituents of relevant steric hindrance. These conclusions are generalized to take into account the possible role played by RAHB in a variety of heteroconjugated systems.

The ever growing number of structure determinations of molecular crystals by X-ray or neutron diffraction has contributed to the systematic comparison of the geometries of a molecular fragment in different crystal structures with the aim of extracting new, valuable chemical information, and in this connection, some specific techniques have been developed which are usually referred to as structure correlation methods. ${ }^{1}$ In this paper such methods are applied to the β-diketone fragment in its enol form 1 (hereafter named acacH from acetylacetone) with the aim of understanding what happens to the fragment geometry when it is perturbed by intramolecular, 2 , or intermolecular, 3 , hydrogen bonding. The

specific acacH fragment has been chosen because β-diketones, over the years, have been of constant interest to inorganic, organic, and physical chemistry; the keto-enol equilibrium, the structures of both keto and enol forms, and the intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond formed by the enol tautomer have been extensively studied by a remarkable variety of methods, including NMR, Raman, and IR spectroscopy, X-ray and neutron diffraction, and theoretical calculations, as recently reviewed in great detail by Emsley. ${ }^{2}$ Starting from Emsley's considerations and conclusions, the idea of this work came from the empirical observation that a greater delocalization of the π-conjugated system occurs in the $\mathrm{HOCR}=\mathrm{CR}-\mathrm{CR}=\mathrm{O}(\mathrm{acacH})$ fragment when it forms either intramolecular or infinite-chain intermolecular hydrogen bonding. ${ }^{3}$ The nature and the entity of the effect is shown in Table I. Here the standard distances are those tabulated ${ }^{\text {la,le }}$ for pure single and double bonds, while the unperturbed ones have been determined as an average of nine fragments (see next paragraph) that have

[^0]Table I. Selected Geomtries for the acacH Fragment ${ }^{a}$

	d_{1}	d_{2}	d_{3}	d_{4}	$\% 1 b^{6}$
standard	1.37	1.33	1.48	1.20	0
unperturbed	1.353 (4)	1.344 (3)	1.454 (5)	1.225 (3)	13
extreme perturbations					
intermolecular $\mathrm{HB}(3)$	1.316 (2)	1.372 (2)	1.431 (2)	1.238 (2)	29
intramolecular HB (2)	1.281 (4)	1.398 (4)	1.410 (4)	1.279 (4)	48
${ }^{a}$ Distances are in \AA and esd's are in parentheses. d_{1-4} are defined in $l a$ and $2 .{ }^{b} 1 \mathrm{~b} \%=$ percent contribution of the polar form $l b$ to the fundamental state according to Pauling's formula of bond order. ${ }^{4}$					

not been "perturbed" by hydrogen bond formation. The unperturbed geometry can be described as a 87:13 mixture of the resonance forms $I a$ and $I b$ to the fundamental state according to the Pauling's formula of bond order. ${ }^{4}$ However, when acacH forms, in molecular crystals, intramolecular (2), or chain intermolecular (3) hydrogen bonds, d_{1}, d_{2}, d_{3}, and d_{4} distances undergo changes which are consistent with an increased contribution of the polar form $l b$ to the limits of 29 or 48% for the inter- or intramolecular case, respectively.

[^1]Table II. Selected Internuclear Distances for acacH Fragments ${ }^{a}$

	d_{1}	d_{2}	d_{3}	d_{4}	esd	q_{1}	q_{2}	Q	$d_{0.0}$	$d_{\text {O-H }}$	$d_{\text {H. } .0}$	esd	λ
1	1.290	1.390	1.398	1.297	0.013	0.007	-0.008	-0.001	2.481	f			0.50
$2^{\text {b }}$	1.281	1.398	1.410	1.279	0.004	-0.002	-0.012	-0.014	2.485	1.24	1.32	0.01	0.52
2^{\prime}	1.294	1.376	1.401	1.276	0.003	-0.018	-0.025	-0.043	2.498	1.18	1.40	0.03	0.57
3	1.313	1.391	1.397	1.288	0.004	-0.025	-0.006	-0.031	2.456	1.12	1.37	0.05	0.55
4	1.304	1.382	1.408	1.287	0.002	-0.017	-0.026	-0.043	2.460	1.22	1.28	0.03	0.57
4^{\prime}	1.302	1.377	1.404	1.277	0.006	-0.025	-0.027	-0.052	2.468	g			0.58
$4^{\prime \prime}$	1.311	1.391	1.422	1.273	0.004	-0.038	-0.031	-0.069	2.459	1.16	1.36	0.01	0.61
5	1.306	1.380	1.408	1.279	0.003	-0.027	-0.028	-0.055	2.470	1.15	1.37	0.03	0.59
6	1.316	1.384	1.416	1.278	0.004	-0.038	-0.032	-0.070	2.455	1.20	1.32	0.04	0.61
7	1.312	1.383	1.415	1.253	0.009	-0.059	-0.032	-0.091	2.458	g			0.64
8	1.303	1.388	1.447	1.266	0.004	-0.037	-0.059	-0.096	2.417	1.22	1.35	0.04	0.65
$9{ }^{\text {c }}$	1.316	1.372	1.431	1.238	0.002	-0.078	-0.059	-0.137	2.575	0.97	1.61	0.02	0.71
10	1.327	1.360	1.444	1.267	0.017	-0.060	-0.084	-0.144	2.461	1.17^{6}	$1.39^{\text {b }}$	$0.02{ }^{\text {b }}$	0.72
11	1.320	1.382	1.452	1.244	0.003	-0.076	-0.070	-0.146	2.522	1.01	1.62	0.03	0.73
11'	1.327	1.379	1.453	1.249	0.003	-0.078	-0.074	-0.152	2.517	1.14	1.45	0.03	0.74
12	1.312	1.384	1.442	1.218	0.006	-0.094	-0.058	-0.152	2.545	0.97	1.66	0.08	0.74
13	1.346	1.372	1.442	1.236	0.009	-0.110	-0.070	-0.180	2.527	g			0.78
14	1.329	1.367	1.467	1.234	0.004	-0.095	-0.100	-0.195	2.547	g			0.80
15	1.345	1.354	1.451	1.245	0.004	-0.100	-0.097	-0.197	2.554	0.97	1.69	0.03	0.81
16^{c}	1.334	1.341	1.438	1.228	0.007	-0.106	-0.097	-0.203	2.600	g			0.82
$16^{\prime c}$	1.326	1.335	1.436	1.219	0.003	-0.107	-0.101	-0.208	2.600	0.97	1.63	0.04	0.82
17	1.332	1.347	1.448	1.223	0.007	-0.109	-0.101	-0.210	2.564	0.97	1.69	0.08	0.83
18	1.344	1.350	1.445	1.223	0.005	-0.121	-0.095	-0.216	2.614	0.97	1.75	0.04	0.84
19	1.352	1.342	1.448	1.239	0.004	-0.113	-0.106	-0.219	2.665	g			0.84
20	1.338	1.352	1.455	1.216	0.001	-0.122	-0.103	-0.225	2.615	0.97	1.74	0.03	0.85
U^{d}	1.353	1.344	1.454	1.225	$0.01{ }^{\text {h }}$	-0.128	-0.110	-0.238					0.87
$\mathrm{S}^{\text {e }}$	1.37	1.33	1.48	1.20		-0.17	-0.15	-0.32					1

${ }^{a}$ Distances and esd's are in \AA; references can be found in Table S3, internuclear angles are in Table S4 and the structures of 1-20 are in Table S5 (all deposited ${ }^{8}$). $Q=q_{1}+q_{2}$ and $\lambda=(1-Q / 3.320) / 2$ (see text). ${ }^{b}$ Structure determined by neutron diffraction. ${ }^{c}$ Intermolecular hydrogen bonding (2). ${ }^{d}$ Unperterbed geometry. ${ }^{e}$ Standard geometry. ${ }^{f}$ Values not reported. 8 Values not considered. ${ }^{h}$ Esd of the weighted average of nine structures.

Data Retrieval

Two crystal structures have been determined in our laboratory ${ }^{5}$ (compounds 3 and 5 of Table II) whereas all other crystallographic data have been retrieved from the Cambridge Structural Database (1986 release) ${ }^{6}$ by using the following criteria.
(a) Reliability: $R<0.10$ (neutrons) or <0.07 (X-rays), $d_{\mathrm{C}-\mathrm{C}}$ $<0.015 \AA$, no disorder in the non-hydrogen atoms, no acacH fragments located on crystallographic symmetry elements to avoid hydroxyl hydrogens in apparent central $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ position caused by disorder. ${ }^{7}$
(b) Structural Requirements. To avoid unwanted geometry perturbations, all acacH fragments carrying other heteroatoms were excluded, with the exception of the OR group at C_{3} (i.e. β-keto esters were included) and of one SSSR group at C_{2} (compound $\mathbf{1 0}$ of Table II). Fragments where $\mathrm{C}_{1}, \mathrm{C}_{2}$, or C_{3} atoms were part of an aromatic ring were not taken into account.
(c) Hydrogen Bonds. All structures where acacH forms other hydrogen bonds in addition to those of 2 or 3 were excluded.
(d) Unperturbed Sample. The same limitations as in (a) and (b) plus $\mathrm{R}=$ alkyl instead of H were adopted. With these limitations nine unperturbed acacR fragments were retrieved (Table $\mathrm{S} 1^{8}$); their weighted average distances (end of Table II) were considered to represent the fragment geometry when not perturbed by hydrogen bond formation.

Moreover three type 3 and 22 type 2 acacH fragments were observed; for each one $d_{1}, d_{2}, d_{3}, d_{4}, d_{\mathrm{O} 1-\mathrm{H}}, d_{\mathrm{O} 1 \ldots 02}$, and $d_{\mathrm{O} 2 \ldots \mathrm{H}}$ distances were registered (Table II) and their references and bond

[^2]angles are reported in Tables S3 and S4. ${ }^{8}$ All X-ray O-H distances were corrected according to a method used by Taylor and Kennard ${ }^{9}$ for a similar situation. Determined $d_{\mathrm{O}-\mathrm{H}}$ values have been corrected by displacing the H atom along the $\mathrm{O}-\mathrm{H}$ bond at $0.97 \AA$ when $d_{0-\mathrm{H}} \leq 0.97 \AA$, but leaving distances $>0.97 \AA$ unchanged. ${ }^{10}$ Only two full refinements of neutron data (compounds 2 and $4^{\prime \prime}$) and a partial one (compound 10) have been reported so far, so mostly H positions from X-ray scattering are used here; to increase reliability, H positions were kept only for structures having $R<0.065$ and a ratio of the number of independent reflections/number of refined parameters >5.3.

Molecular structures determined by gas-phase electron-diffraction (ged) methods and microwave (MW) spectroscopy were reviewed as well. In the only accurate MW structure (malonaldehyde) ${ }^{11}$ the position of the hydroxyl H atom was not experimentally determined but calculated from neutron diffraction data. As far as ged structures are concerned, most of them ${ }^{12}$ assume C_{2} symmetry and are of little use here; only the most recent one, that of acetylacetone, ${ }^{13}$ reports the complete molecular geometry.

Structure Correlations

Symmetry Coordinates. Actual $d_{1}-d_{4}$ values were considered to be antisymmetrical in-plane vibrations belonging to the B_{1} irreducible representation of the $C_{2 v}$ geometry 4. The corresponding symmetry coordinates are $q_{1}=d_{4}-d_{1}$ and $q_{2}=d_{2}$ d_{3}.

[^3]
\boldsymbol{q}_{1} versus \boldsymbol{q}_{2} Correlation. The scatter plot of all the data of Table II in the q_{1}, q_{2} space is reported in Figure 1. The plot has central symmetry as data can be plotted twice according to the equivalence of the enoketonic (EK) and ketoenolic (KE) forms in fragment 4, and its center corresponds to the totally delocalized π-bond system. The extreme full squares of the curve (marked EK and KE) are representative of the enoketonic and ketoenolic geometries for hypothetical standard pure single and double bond distances (Table I); the two stars have a similar meaning but with reference to the geometry unperturbed by hydrogen bonding. The distribution of the experimental points shows that any perturbation can be observed up to the full delocalization. The dashed line connecting EK and KE squares represents the equation $q_{2}=$ $0.882 q_{1}$, calculated from the values of $q_{1}=-0.17$ and $q_{2}=-0.15$ for the standard geometry S of Table II and it is seen to reasonably fit the experimental points.

As q_{1} and q_{2} appear to be linearly dependent, a single coordinate $Q=q_{1}+q_{2}$ can be used, $Q=0$ corresponding to the fully π-delocalized structure and $Q=-0.320$ or $+0.320 \AA$ to the completely π-localized EK or KE forms, respectively. Alternatively, as the perturbation of the conjugated system substantially mixes the EK and KE geometries, the mixing can be described by a coupling parameter, $\lambda .{ }^{14}$ The state of the fragment is expressed as $\lambda(E K)+(1-\lambda)(K E)$ with $\lambda=(1-Q / 0.320) / 2$ and $\lambda=1,0.5$, and 0 , corresponding to the π-localized EK and the fully delocalized and localized KE forms, respectively. The data of Table II are approximately arranged in order of increasing Q and λ values.
$\boldsymbol{d}_{\mathrm{O}-\mathrm{o}}$ versus Q Correlation. The scatter plot of $d_{\mathrm{O}-\mathrm{O}}$, the contact distance between the two oxygens implied in the $\mathrm{O}_{1}-\mathrm{H} \cdots \mathrm{O}_{2}$ hydrogen bond, and $Q=q_{1}+q_{2}$ for all acacH fragments of Table II is shown in Figure 2. The plot is symmetric with respect to the displacements from the delocalized structure having $Q=0$ and $\lambda=0.5$. Very short values of d_{0-0} are associated with small values of $|Q|$, that is with strong π-bond delocalization. The relevance of the shortening can be evaluated by taking into account that the d_{0}...o distance is typically $2.76 \AA$ in ice and that the average value of this quantity in $\mathrm{R}_{3} \mathrm{C}-\mathrm{OH} \ldots \mathrm{O}=\mathrm{CR}_{2}$ contacts is $2.80 \pm 0.08 \AA .{ }^{15}$
$\boldsymbol{d}_{\mathrm{O}-\mathrm{H}}$ and $\boldsymbol{d}_{\mathrm{H}-\mathrm{O}}$ Distances. An analysis of the correlation among the covalent $d_{\mathrm{O}-\mathrm{H}}$ and contact $d_{\mathrm{O} \ldots \mathrm{H}}$ distances and different values of the contact $d_{0, \ldots}$ distances for the structures of Table II, whose refined H positions are known, is reported in Figure $\mathrm{S} 1 . .^{8}$ It shows that in compounds of Table II there is no evidence of fully symmetrical $\mathrm{O} \cdot \mathrm{H} \cdot \mathrm{O}$ bonds, suggesting that, at least in the crystalline state, the enolic proton of the acacH fragment experiences, for the full range of $d_{0 \ldots \mathrm{o}}$ values, a double minimum potential. This result is in touch with a variety of experimental IR, Raman, and NMR data obtained in solution and in gas or solid state and reviewed by Emsley ${ }^{2,16}$ and is in agreement with a recent study ${ }^{17}$ which has shown that the HOMO-LUMO configurational interaction in 2 would cause a second-order Jahn-Teller distortion of a symmetrical $\mathrm{O} \cdots \mathrm{H} \cdots \mathrm{O}$ hydrogen bond even in a molecule of potential $C_{2 v}$ symmetry, e.g. in the enolic form of dibenzoylmethane (compound 4 of Table II). Moreover, present data do not suggest the presence of a disordered double position of the H atom in spite of the fact that proton tunneling has been observed in malonaldehyde in the gas phase ${ }^{11}$ and that proton disorder has

[^4]

Figure 1. Scatter plot in the $\left(q_{1}, q_{2}\right)$ space for all data of Table II. The full squares and stars refer to the standard and unperturbed acacH geometries, respectively; full and open circles refer to acach geometries perturbed by intra- and intermolecular hydrogen bonds, respectively.
been seen in a number of crystals. ${ }^{18}$
Interatomic Angles. Let us call α, β, and γ respectively the angles $\mathrm{O}_{1}-\mathrm{C}_{1}=\mathrm{C}_{2}, \mathrm{C}_{1}=\mathrm{C}_{2}-\mathrm{C}_{3}$, and $\mathrm{C}_{2}-\mathrm{C}_{3}=\mathrm{O}_{2}$ and δ the angle $\mathrm{O}_{1}-\mathrm{H} \cdots \mathrm{O}_{2}$. As for δ, the data of Table II and S^{2} show that in the intramolecular hydrogen bond (2) this angle is almost independent of the $d_{0 \ldots 0}$ distance with an average value of 149 [5] ${ }^{\circ}$ and that in the intermolecular case (3) this angle takes the rather different value of 173 [4] ${ }^{\circ}$. Analysis of the α, β, and γ values is complicated by the variety of chemical situations in which the fragment is found (Table S5). ${ }^{8}$ A comparison can be carried out by taking into account only intramolecular hydrogen bonded fragments (2) where the $\mathrm{C}=\mathrm{C}-\mathrm{C}$ group is not part of a ring with less than six members (compounds 1-8, 10, 12-15, 17, 18, 20). The average values are as follows:

$d_{0 \ldots \text { o }}$ range	$2.40-2.51$	$2.52-2.59$	$2.60-2.70$	full range
means	$120.5[8]$	$123.8[10]$	$125.3[4]$	$122.1[20]$
	$120.5[15]$	$118.0[10]$	$119.1[3]$	$119.5[12]$
	$120.4[10]$	$124.1[10]$	$124.3[6]$	$122.0[20]$

and show that, on average, the shortening of the $\mathrm{O} \ldots \mathrm{O}$ distance
(18) Enolic proton tunnelling has been actually observed in some molecules carrying the acacH fragment, e.g. in malonaldehyde by microwave spectroscopy ${ }^{11}$ and naphtazarin by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Moore, R. E.; Schuer, P. J. J. Org. Chem. 1966, 31, 3272. Dumas, J. M.; Cohen, A.; Gomel, M. Bull. Soc. Chim. Fr. 1972, 1340 . de la Vega, J. R.; Bush, J. H.; Schauble, J. H.; Kunze, K. L.; Haggert, B. E. J. Am. Chem. Soc. 1982, 104, 3295 . Kobayashi, M.; Terni, Y.; Turi, K. Tetrahedron Lett. 1976, 619) and IR spectroscopy (Braton, S.; Strolbuch, F. J. Mol. Struct. 1980, 6l, 409). A theoretical study (De la Vega, J. R. Acc. Chem. Res. 1982, 15, 185) has shown that proton tunnelling is quenched by geometrical dissymmetries and can occur only in molecules having C_{s} symmetry with respect to the plane perpendicular to the mean plane of the fragment. Such a requirement is difficult to be fulfilled even for symmetrical molecules in crystals in consequence of small incidental conformational differences, but they can be met when the molecule lies astride a crystallographic symmetry plane; in such a case, however, static disorder would be indistinguishable from proton tunnelling (see for instance ref 7). The analysis of the order \leftrightarrow disorder transition of naphtizarine C at 110 K (by X-ray and neutron diffraction; Herbstein, F. H.; Kapon, M.; Reisner, G. M.; Lehman, M. S.; Kress, R. B.; Wilson, R. B.; Shian, W.-I.; Duesler, E. N.; Paul, I. C.; Curtin, D. Y. Proc. R. Soc. London, A 1985, A399, 295) seems to indicate that disorder in the enolic proton positions can be associated with molecules where the acacH fragment forms both intra- (2) and intermolecular (3) hydrogen bonds (a case excluded here). Similar conclusions have been drawn by Saenger (Betsel, C.; Saenger, W.; Hingety, B. E.; Brown, G. M. J. Am. Chem. Soc. 1984, 106, 7545. Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984) mainly on the grounds of the neutron-diffraction structure of β-cyclodextrine undecahydrate, where "flipflop" $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{O} \cdots \mathrm{H}-\mathrm{O}$ hydrogen bonds were found to be associated with extended "homodromic, antidromic and heterodromic" circular systems of hydrogen bonds where "the transition from one state into the other is not by tunneling of the hydrogen... but rather by rotation of hydroxyl groups".

Figure 2. Scatter plot in the $\left(d_{\mathrm{O}}, Q\right)$ space for all data of Table II. Full and open circles indicate acacH fragments forming intra- and intermolecular hydrogen bonds, respectively.

Figure 3. A graphical scheme of the RAHB model.
consequent to hydrogen-bond strengthening is mainly achieved by the narrowing of both α and γ whereas β remains practically unchanged.

Data Interpretation

A Qualitative Model. The observed correlations are in agreement with the qualitative interpretation sketched in Figure 3. Firstly, assuming a single $\mathrm{C}-\mathrm{C}$ instead of a double $\mathrm{C}=\mathrm{C}$ bond, the hydrogen bond formed will be the balance among different factors, that is, the energy of the hydrogen bond itself, E_{HB}, plus the ring energies, such as those of bond angle bending and van der Waals 1-4 interactions, $E_{\text {vdw }}$, due to the $\mathrm{R}_{1}-\mathrm{R}_{3}$ substituents. Now, by reestablishing the double $\mathrm{C}=\mathrm{C}$ bond, the resonance $1 a$ $\leftrightarrow 1 b$ will cause a shift of electrons from left to right (Figure 3) which will stop when $E_{\mathrm{RES}}+E_{\mathrm{BP}}$ reaches a minimum, where E_{RES} is the energy of delocalization of the π system and E_{BP} is the bond polarization energy needed to dissociate the partial charges on the terminal oxygens. These have the correct sign for strengthening the hydrogen bond with consequent shortening of d_{0-0} and lengthening of $d_{\mathrm{O}-\mathrm{H}}$. The proton movement corresponds to a vacancy going to the right or to a negative charge going to the left, and thus the total effect is the annihilation through hydro-gen-bond transmission of the partial charges generated initially by resonance, so allowing an increased contribution of the polar form $1 b$ and a further strengthening of the hydrogen bond, this imaginary process going on until the minimum of the function $E=E_{\mathrm{HB}}+E_{\mathrm{RES}}+E_{\mathrm{BP}}+E_{\mathrm{vdw}}$ is attained.

This strengthened hydrogen bond may be called a resonance assisted hydrogen bond (RAHB). It is phenomenologically associated with the intercorrelation of Q or λ (both measuring the π-system delocalization) with the variations of the $\mathrm{O} \ldots \mathrm{O}$ or $\mathrm{O}-\mathrm{H}$ distances (both measuring the strength of the hydrogen bond). The hydrogen bonding scheme is usually intramolecular, 2 , but may be intermolecular, 3 , as well, and in this second case the effect of hydrogen-bonding strengthening appears to be smaller. In a sense RAHB can be conceived as a feedback mechanism which maintains zero partial charges on the two opposite oxygens by quenching the increase due to resonance with a decrease caused by the proton shift.

An alternative exposition of the RAHB model can be as follows. ${ }^{19}$ The hydrogen bond is formed by donation of the in-plane
(π^{\prime}) lone pair of the carbonyl oxygen in Figure 3, whereas resonance involves donation of the out-of-plane (π) lone pair on the enol to the carbonyl oxygen. The basis energy of the π^{\prime} lone pair orbital is increased, owing to the decreased electronegativity of the oxygen resulting from π resonance. Hence the π^{\prime} lone pair becomes a better electron donor and a stronger hydrogen-bond acceptor.

Several independent data suggesting a relationship between hydrogen-bond strengthening and π conjugation in β-diketones have been reported in the past. The most convincing proof is probably the strict proportionality of ${ }^{1} \mathrm{H}$ NMR downfield chemical shift of the enolic proton (a common indicator of the hydrogenbond strength) and of the IR frequency of the O-D out-of-plane vibration, $\nu(\mathrm{OD})$ (a measure of π conjugation), ${ }^{20 \mathrm{a}}$ on one side, and the increase of the IR $\nu(\mathrm{OH})$ stretching frequency when the hydrogen bond forms a ring with a conjugated π system on the other. By this last method Kopleva and Shigorin ${ }^{20 \mathrm{~b}}$ estimated that the intramolecular hydrogen bond was stronger in the enolic form of dibenzoylmethane 5 b than in 5 a by some $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$ while the integrated intensities of the stretching bands were strictly comparable, a behavior which is in total disagreement with what is observed in common $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds, where the band intensities increase linearly with the bond energies. These findings were not properly interpreted by a previous theory based on the supposed benzenoid character of ring $6,{ }^{21 a, 21 b}$ which is characterized by a

5a

5b

strong and centered hydrogen bond (see also the review by Pimentel and $\mathrm{McClellan}{ }^{21 c}$). It seems clear that any evidence of a noncentered proton discredits this theory as it is actually done not only with the data of Table II but also with the IR and Raman evidence that molecules obtainable by symmetrical substitution of the acacH fragment have C_{s} and never C_{2} symmetry. ${ }^{2,22}$ On the contrary, the RAHB model does not have difficulties in dealing with noncentered hydrogen positions and can explain the apparent paradox of a very strong hydrogen bond associated with abnormally small $\nu(\mathrm{OH})$ stretching band intensities ${ }^{19}$ reported above in terms of the damping of the transition moment of the $\nu(\mathrm{OH})$ vibration through the feedback of the π-conjugated system. Several ab initio quantum mechanical studies on intramolecularly hydrogen-bonded malonaldehyde, with either partial or complete optimization of the molecular geometry, are reported in the literature ${ }^{23,24}$ and are to be compared with its microwave-determined structure ${ }^{11}$ (relevant parameters: $Q=-0.192, \lambda=0.80$, and d_{0-0} $=2.553-2.574 \AA, d_{0-\mathrm{H}}$ not determined $)$. The results consistently indicated that SCF or Hartree-Fock approximation is incapable of giving the correct geometry of malonaldehyde; it has also been shown ${ }^{24}$ that the most extended basis sets (Huzinaga-Dunning's ${ }^{25}$

[^5]double- ζ plus polarization and Pople's ${ }^{26} 6-31 \mathrm{G}^{* *}$) with full geometry optimization (C_{s} symmetry) give reasonable $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ distances but unrealistically long $d_{\mathrm{O} \ldots \mathrm{o}}$ values ($\lambda=0.84$ and $d_{\mathrm{O}-\ldots}$ $=2.684 \AA$ at the $6-31 \mathrm{G}^{* *}$ SCF level ${ }^{24}$). Better results have been obtained with calculations carried out ${ }^{24}$ in the frame of second order perturbation theory using the Moller-Plesset (MP2) method in its analytic first derivative version ${ }^{27}$ at the $6-31 \mathrm{G}^{* *}$ MP2 level. The optimized geometry has $Q=-0.157, \lambda=0.75, d_{0 \ldots \mathrm{o}}=2.589$, and $d_{\mathrm{O}-\mathrm{H}}=0.994 \AA$, displaying realistic $\mathrm{O} \ldots \mathrm{O}$ distances and a significant lengthening of the $\mathrm{O}-\mathrm{H}$ bond. The same calculations give values of $d_{0 \ldots \mathrm{o}}=2.360$ and $d_{\mathrm{O}-\mathrm{H}}=1.203 \AA$ for the $C_{2 v}$ transition state and a $6-31 \mathrm{G}^{* *}$ MP4/6-31G* MP2 barrier for proton transfer of $18.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Comparison at the $6-31 \mathrm{G}^{* *}$ level of theory of the hydrogen-bonded and the non-hydrogen-bonded KE form (i.e. after 180° rotation around the $\mathrm{C}-\mathrm{OH}$ bond) shows that the latter is much less π delocalized $(\lambda=0.934)$ and that the energy of complete disruption of the intramolecular hydrogen bond is $48.5-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Therefore the qualitative predictions given by the RAHB model are in agreement with the reported results of ab initio quantum mechanical studies in two important respects: (i) the intramolecular hydrogen bond in malonaldehyde is much stronger than the usual $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (some $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$) and (ii) its strengthening is associated with a significant delocalization of the π-conjugated system. Moreover, the peculiarity of the hydrogen bond in malonaldehyde is stressed by the consideration ${ }^{24}$ that ordinary hydrogen bonds such as $\mathrm{H}_{2} \mathrm{O}-\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{HF}-\mathrm{HF}$ are properly treated at the SCF level of theory whereas malonaldehyde requires incorporation of electron correlation effects.

A Semiempirical Energy Model for RaHB

In the previous section it has been suggested that the equilibrium geometry of the hydrogen bonded acacH fragment can be obtained by minimizing the function

$$
\begin{equation*}
E=E_{\mathrm{HB}}+E_{\mathrm{RES}}+E_{\mathrm{EP}}+E_{\mathrm{vd}} \tag{1}
\end{equation*}
$$

and this approximate partitioning of energy has the advantage that semiempirical treatments for quantitative evaluation of the four terms on the right are available from the literature.
E_{HB} is the total energy, including both attraction and repulsion terms, of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond as a function of $d_{\mathrm{O}-\mathrm{H}}=$ r and $d_{0} \ldots \mathrm{O}=R$. It can be written as a $\left.E_{\mathrm{HB}}(r, R)\right|_{R_{0}}$, where R_{0} is the equilibrium $\mathrm{O} \cdots \mathrm{O}$ distance not perturbed by resonance and can be calculated by the equation proposed by Lippincott and Schroeder ${ }^{28}$ both for linear and bent $\mathrm{O}-\mathrm{H} \ldots \mathrm{O}$ bonds. As preliminary calculations showed that energies were very similar in the two cases for the present situation ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ angle $=149^{\circ}$), the simpler equation for linear bonds was applied. Parameters used in the equation were those given ${ }^{28}$ for the hydrogen bond in ice $\left(R_{0}=2.76, r_{0}=1.01 \AA\right)$; the equation for $\left.E_{\mathrm{HB}}(r, R)\right|_{2.76}$ has been evaluated for any r in the range $0.97 \leq r \leq 1.26 \AA$ at the R value for which the energy was a relative minimum.
E_{RES} can be calculated with the expression for $E_{\text {RES }}(Q)$ proposed by Krygowski and Anulewicz, ${ }^{29}$ which is known to give resonance energy values in good agreement with those obtained by more sophisticated methods. $E_{\text {RES }}$ is calculated as the negative of the weighted sum of the energies needed to deform the actual geometry into all possible resonance structures. The equation needs some parameters which have been taken from the original paper. ${ }^{25}$
E_{BP} is the energy required to create the opposite fractional charges $\pm q$ on the two terminal oxygens and has been evaluated by the expression $E_{\mathrm{BP}}(q)=\operatorname{SUM}_{1}^{\text {atoms }}\left(\alpha_{i} q_{\mathrm{i}}+\beta_{i} q_{\mathrm{i}}\right)$ where α_{i} and β_{i} are the coefficients of the atomic ionization energy-electron affinity curves tabulated by Jaffé et al. ${ }^{30}$ for the main elements;
(26) Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, $28,213$. (27) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S. Int. J. Quantum Chem., Symp. 1979, 13, 224.
(28) Lippincott, E. R.; Schroeder, R. J. Chem. Phys. 1955, 23, 1099. Schroeder, R.; Lippincott, E. R. J. Chem. Phys. 1957, 61, 921.
(29) Krygowski, T. M.; Anulewicz, R.; Kruszewski, J. Acta Crystallogr., Sect. B 1983, 39, 732.

Figure 4. Total energy ($\mathrm{kJ} \mathrm{mol}^{-1}$) variations of the acacH fragment with $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$ and $\mathrm{R}_{3}=\mathrm{H}$ (acetylacetone) according to eq 1 as a function of the coupling parameter λ and the $n(\mathrm{O}-\mathrm{H})$ bond order. The upper left and lower right corners represent the geometries of the EK and KE forms, respectively. The stars indicate the experimental structures of acetylacetone as determined by gas electron diffraction, ${ }^{13}$ and full points indicate the observed geometries of Table II.
the coefficients used were those for the p orbitals on oxygen.
The charges q have been calculated as the sum of two terms, that is $q=q_{\mathrm{RES}}(Q)+q_{\mathrm{PT}}(r)$, where $q_{\mathrm{RES}}(Q)$ is the partial charge due to the resonance, directly given by the weight of the polar resonance form lb used in the calculation ${ }^{29}$ of E_{RES}, and $q_{\mathrm{PT}}(r)$ is the partial charge generated on the terminal oxygens by the transfer of the proton. As the form of the function $q_{\mathrm{PT}}=\mathrm{f}(r)$ was unknown, it has been assumed that $q_{\mathrm{PT}}=\mathrm{f}[n(\mathrm{O}-\mathrm{H})]$ has the same form as $q_{\text {RES }}=f(\lambda)$, where $n(\mathrm{O}-\mathrm{H})$ is the Pauling's bond order of the $\mathrm{O}-\mathrm{H}$ bond given by $d_{\mathrm{O}-\mathrm{H}}=r=0.97-0.925 \mathrm{log}$ $n(\mathrm{O}-\mathrm{H})$. This is the only independent assumption made in the evaluation of eq 1 .

For the evaluation of E_{ydw}, atom-atom potentials were taken from Giglio. ${ }^{31} \quad E_{\mathrm{vdw}}$ was calculated for a series of geometries where the correct R was obtained by changing the two angles α and γ and a final curve $\mathrm{E}_{\mathrm{vdw}}=\mathrm{f}[n(\mathrm{O}-\mathrm{H})]$ was interpolated by polynomial expansion. Interactions between $\mathrm{O}-\mathrm{H}$ and $\mathrm{O}=$ were neglected as they were already included in the E_{HB} term; bending energies inside the fragment were omitted as preliminary calculations showed their variations were negligible for the full range of angular values experienced.

Final Energy Maps. The total energy map calculated for acetylacetone $\left(\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}\right)$ as a function of the coupling parameter λ and of the $n(\mathrm{O}-\mathrm{H})$ bond order is reported in Figure $4 .{ }^{32}$ The map is centrosymmetric according to the acacH fragment symmetry. Values of (r, R) are shifted in consequence of resonance ($\lambda=0.68$) from ($1.01,2.74$) \AA for ice to $(1.08,2.50) \AA^{33}$ with a stabilization energy of the hydrogen bond

[^6]Chart I. Some Molecular Fragments Which Are Known or Are Supposed To Be Involved in RAHBs

1. Enolones

2. Enaminones

3. Enaminoimines

4. Enolimines

5. Amide-amidine coupling

6. Thymine-adenine coupling

7. Cytosine-guanine coupling
due to resonance $\Delta E_{\mathrm{RAHB}}=36.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The total hydrogen bonding energy is calculated with this model to be $16.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for ice (in agreement with the usually reported value of some 20 $\mathrm{kJ} \mathrm{mol}^{-1}$) and $53.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for acetylacetone, which fits the already quoted ab initio value ${ }^{24}$ of $48.5-51.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for malonaldehyde and its average experimental value, which has been reported ${ }^{2}$ to be some $50 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The barrier to proton transfer is calculated to be $51.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, which is reduced to $34.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ by subtracting the zero-point energy of the fundamental state [one half of the $\nu(\mathrm{OH})$ stretching frequency of $2700 \mathrm{~cm}^{-12,19}$]. This value is probably too high and greater than the "best" ab initio value of $18 \mathrm{~kJ} \mathrm{~mol}^{-1}$ already quoted, ${ }^{24}$ but it has to be noted that values in the range $15-43 \mathrm{~kJ} \mathrm{~mol}^{-1}$ have been calculated at different levels of theory. Recently ${ }^{13}$ the molecular structure of acetylacetone has been determined by accurate gas-phase elec-tron-diffraction methods and the Q and λ parameters and $r=d_{0-\mathrm{H}}$ and $R=d_{0 . . .0}$ distances have been found to be -0.124 and 0.69 and 1.049 (15) \AA and $2.512 \AA$, respectively. The corresponding point is indicated by a star on the map of Figure 4, and it is seen
to correspond reasonably well to the minimum position on the map itself.

The experimental geometries of Table II are reported in Figure 4 as well (full points). All of them are located inside the almost diagonal energy valley and, as far as the causes of their exact position are concerned, two specific factors may be discerned. The first is of electronic nature, as very strong hydrogen bonds are associated only with fragments where the β-keto enolic fragment is the only conjugated system. The second effect is steric. All of the strongest hydrogen bonds are associated with bulky R_{1} and R_{3} substituents, and the clearest evidence comes from the comparison of compounds 19 and 11 , where the substitution of a methyl by a tert-butyl group reduces $d_{0 . \ldots \mathrm{o}}$ from 2.665 to 2.552 \AA. This fact is in agreement with the energy values calculated by introducing in eq 1 the $E_{\text {vdw }}$ term corresponding to the van der Waals interactions of two tert-butyl groups in R_{1} and R_{3}, which shifts (r, R) to ($1.11,2.48$) \AA and increases $\Delta E_{\text {RAHB }}$ to 45.5 kJ mol^{-1} and the total hydrogen bond energy to $82.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ while the proton transfer barrier decreases to $27.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Conclusions and Generalization

The comparative analysis of all of the available crystal structures containing the acach β-diketone fragment in its enol form seems to indicate that the intramolecular hydrogen bond (2) found in these compounds belongs to a specific type we have called RAHB as it is strengthened by the interplay with the conjugated π-bond system of the fragment. Moreover, a simple mathematical treatment based on this model gives quite resonable values for hydrogen bond energies, confirming the reliability of the model itself at least in the intramolecular case. The RAHB model can be generalized by saying that "the interplay between hydrogen bond and heterodienes (or more generally heteroconjugated systems) can strengthen remarkably the hydrogen bond itself". A collection of molecular fragments which may be implied in this phenomenon via intermolecular (including dimerization) or intramolecular hydrogen bond formation is shown in Chart I, out of which enolones (1) are the object of the present study and preliminary data confirming the strong π delocalization of hy-drogen-bonded enaminones and mino alcohols have been already reported. ${ }^{34}$ Possible biochemical and biological implications originate from the fact that both thymine-adenine (7) and cy-tosine-guanine (8) couples in DNA are linked by two hydrogen bonds which reproduce the amide-amidine coupling (5) and that cytosine-guanine coupling implies another much wider cycle of hydrogen bonds and conjugated double bonds. Similar considerations can be made in connection with the hydrogen bonds determining the secondary structure of proteins as α-helices contain three nearly parallel and isooriented $\mathrm{C}=\mathrm{O} \cdots \mathrm{HNC}=\mathrm{O} \cdots \mathrm{HN}$ chains of π heteroconjugated systems connected by hydrogen bonds and β-pleated sheets of infinite antiparallel arrays of identical chains.

Acknowledgment. We express our sincere appreciation to the referees for their helpful, constructive advice.

Supplementary Material Available: Tables of interatomic distances, structures, and internuclear angles and a plot of $d_{0-\mathrm{H}}$ and $d_{\mathrm{H} \ldots \mathrm{O}}$ vs $d_{\mathrm{O} \ldots \mathrm{O}}$ (6 pages). Ordering information is given on any current masthead page.
(34) Ferretti, V.; Bellucci, F.; Bertolasi, V.; Gilli, G. Proceedings of the IX ECM, Torino, Italy, 1985; p 337.

[^0]: * Address correspondence to Prof. Gastone Gilli, Dipartimento di Chimica, Universitå di Ferrara, Via L. Borsari, 46, 44100 Ferrara, Italy.

[^1]: (1) Bent, H. A. Chem. Rev. 1968, 68587. Buergi, H. B. Inorg. Chem. 1973, 12, 2321. Buergi, H. B.; Dunitz, J. D.; Shefter, E. J. Am. Chem. Soc. 1973, 95, 5065. Buergi, H. B. Angew. Chem., Int. Ed. Engl. 1975, 14, 460. Dunitz, J. D. X-ray Analysis and the Structure of Organic Molecules; Cornell University Press: Ithaca, 1979. Buergi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153. Buergi, H. B. Static and Dynamic Implications of Precise Structural Informations. Reports of the 11 th International School of Crystallography, Erice, Italy, 1985; pp 245-266.
 (2) Emsley, J. Struct. Bonding 1984, 57, 147.
 (3) Gilli, G.; Bellucci, F.; Ferretti, V.; Bertolasi, V. Proceedings of the 10th E.C.M. Pre-Meeting Symposium on Organic Crystal Chemistry, Poznañ, Poland, 1986; pp 45-46.
 (4) Pauling's formula of bond order (Pauling, L. J. Am. Chem. Soc. 1947, $69,542)$ is $d(1)-d(n)=-c \log n$, where n is the bond order, $d(1)$ and $d(n)$ are the distances of single and multiple bond, and $c=[d(1)-d(2)] / \log 2$ is a constant to be evaluated. In the present case (Table I) standard single and double bond distances ${ }^{12, e}$ are $d_{1}=\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}=1.37, d_{2}=\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{C}\left(\mathrm{sp}^{2}\right)=$ 1.33, $d_{3}=\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)=1.48$, and $d_{4}=\mathrm{C}\left(\mathrm{sp}^{2}\right)=0=1.20 \AA$, and c is easily calculated to be 0.565 and $0.498 \AA$ for $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{C}$ bonds, respectively.

[^2]: (5) Gilli, G.; et al., paper in preparation.
 (6) Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.; Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, B. G.; Kennard, O.; Motherwell, W. D. S.; Rogers, J. R.; Watson, D. G. Acta Crystallogr., Sect. B 1979, 35, 2331.
 (7) The only case of m crystallographic symmetry reported refers to the structure of bis(m-bromobenzoyl)methane (Williams, D. E.; Dumke, W. L.; Rundle, R. E. Acta Crystallogr. 1962, 15, 627).
 (8) Tables S1-S5 and Figure S1 have been deposited as supplementary material and contain respectively: selected interatomic distances for the unperturbed acacH fragment with references (Table Sl), structures for the compounds of Table Sl (Table S2), references for compounds of Table S5 (Table S3), selected intermolecular angles for acacH fragments of Table II (Table S4), structures for all molecules carrying the acacH fragment taken into account (Table S 5), and a $d_{\mathrm{O}-\mathrm{H}}$ and $d_{\mathrm{OH} \ldots \mathrm{O}}$ vs $d_{\mathrm{O} \ldots \mathrm{O}}$ scatterplot (Figure S1).

[^3]: (9) Taylor, R.; Kennard, O. Acta Crystallogr., Sect. B 1983, 39, 133.
 (10) To check this correction procedure we have retrieved from the Cambridge Structural Database ${ }^{6} 109$ couples of $d_{O_{-H}}$ values determined both by neutron (N) and X-ray diffraction (X). The scatter plot $d_{\mathrm{O}-\mathrm{H}}(\mathrm{N})$ vs $d_{\mathrm{O}-\mathrm{H}}(\mathrm{X})$ has definitely the expected form, i.e. a slope of zero in the interval $0.80 \leq$ $d_{\mathrm{O}-\mathrm{H}}(\mathrm{X}) \leq 0.97 \AA$ and a slope of one for $d_{\mathrm{O}-\mathrm{H}}(\mathrm{X})>0.97 \AA$ (paper in preparation).
 (11) Baughcum, S. L.; Duerst, R. W.; Rowe, W. F.; Smith, Z.; Bright Wilson, E. J. Am. Chem. Soc. 1981, l03, 6296. Relevant parameters are d_{1} $=1.320, d_{2}=1.348, d_{3}=1.454, d_{4}=1.234, q_{1}=-0.086, q_{2}=-0.106, Q=$ $-0.192, d_{\mathrm{O} \ldots \mathrm{O}}=2.553-2.574$, and $d_{\mathrm{O}-\mathrm{H}}=0.969$ (assumed) \AA.
 (12) Lowrey, A. H.; George, C.; D'Antonio, P.; Karle, J. J. Am. Chem. Soc. 1971, 93, 6399.
 (13) Iijima, K.; Ohnogi, A.; Shibata, S. J. Mol. Struct. 1987, 156, 111. Relevant parameters are $d_{1}=1.319$ (3) $8 d_{2}=1.382$ (7), $d_{3}=1.430$ (8), d_{4} $=1.243$ (2), $q_{1}=-0.076, q_{2}=-0.048, Q=-0.124, d_{0 \ldots \mathrm{O}}=2.512(8), d_{0-\mathrm{H}}$ $=1.049$ (15) A.

[^4]: (14) Mezei, M.; Beveridge, D. L. Anal. N.Y. Acad. Sci. 1986, 82, 1. Kirkwood, J. D. In Theory of Liquids; Adler, B. J., Ed.; Gordon and Breach: New York, 1968.
 (15) Value obtained by averaging the $29 d_{\mathrm{O} \ldots \mathrm{O}}$ values of $\mathrm{R}_{3} \mathrm{COH} \ldots \mathrm{O}=\mathrm{CR}_{2}$ inter- or intramolecular hydrogen bonds ($\mathrm{R}=\mathrm{H}$ or alkyl) published in the years 1984-1985 in Acta Crystallographica.
 (16) Emsley, J. Chem. Soc. Rev. 1980, 9, 91.
 (17) Haddon, R. C. J. Am. Chem. Soc. 1980, 102, 1807.

[^5]: (19) This interpretation has been suggested by one of the referees. A similar effect has been discussed in a different context (Staley, S. W.; Norden, T. D.; Taylor, W. H.; Harmony, M. D. J. Am. Chem. Soc. 1987, 109, 7641.)
 (20) Ogoshi, H.; Yoshida, Z. Chem. Commun. 1970, 176. Kopleva, T. S.; Shigorin, D. N. Russ. J. Phys. Chem. 1974, 48, 312.
 (21) Vinogradov, S. N.; Linnel, R. H. Hydrogen Bonding; van Nostrand Reinhold: New York, 1971. Williams, D. E.; Dumke, W. L.; Rundle, R. E. Acta Crystallogr. 1962, 15, 627. Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond; Freeman: San Francisco, 1960; pp 239-240,
 (22) Tayyari, S. F.; Zeegers-Huyskens, Th.; Wood, J. L. Spectrochim. Acta 1979, 35A, 1265 .
 (23) (a) Karlström, G.; Wennerström, H.; Jönsson, B.; Forsen, S.; Almlöf, J.; Roos, B. J. Am. Chem. Soc. 1975, 97, 4188 . (b) Isaacson, A. D.; Morokuma, K. J. Am. Chem. Soc. 1975, 97, 4453. (c) Karlstrōm, G.; Jönsson, B.; Roos, B.; Wenneström, H. J. Am. Chem. Soc. 1976, 98, 6851. (d) Bouma, W. J.; Vincent, M. A.; Radom, L. Int. J. Quantum Chem. 1978, 14, 767. (e) Fluder, E. M.; de la Vega, J. R. J. Am. Chem. Soc. 1978, 100, 5265. (f) George, P.; Bock, C. W.; Trachtman, M. J. J. Comput. Chem. 1980, l, 373. (g) Bicerano, J.; Schaefer, H. F., III; Miller, W. H. J. Am. Chem. Soc. 1983, 105, 2550.
 (24) Frisch, M. J.; Scheiner, A. C.; Schaefer, H. F., III; Binkley, J. S. J. Chem. Phys. 1985, 82, 4194.
 (25) Huzinaga, S. J. Chem. Phys. 1965, 42, 1293. Dunning, T. H. J. Chem. Phys. 1970, 53, 2821.

[^6]: (30) Hinze, J.; Jaffe, H. H. J. Am. Chem. Soc. 1962, 84, 540. Hinze, J. Jaffê, H. H. J. Phys. Chem. 1963, 67, 1501. Hinze, J.; Whitehead, M. A.; Jaffé, H. H. J. Am. Chem. Soc. 1963, 85, 148.
 (31) Giglio, E. Nature (London) 1969, 222, 339.
 (32) As the $E_{\text {vdw }}$ term for $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$ is practically zero for all the variables range, the map of Figure 4 has been obtained by adding $E_{v d w}$ for $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3}$ and $\mathrm{R}_{2}=\mathrm{H}$ to the sum $E_{\mathrm{HB}}+E_{\mathrm{RES}}+E_{\mathrm{BP}}$; this added term never exceeds $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for the map.
 (33) The function $R=\mathrm{f}(r)$ is known from neutron-diffraction studies (see Figure Sl), and $\Delta E_{\text {RAHB }}$ is the difference between the minimum of the function $E_{\mathrm{HB}}+E_{\mathrm{vdw}}$ and the absolute minimum of the map of Figure 4.

